Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (Month 201y), pp. 1–xx

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Generalized Rough Approximations in Ordered LA-semigroups

Moin Akhtar Ansari

Received 25 October 2017; Revised 13 December 2017; Accepted 30 December 2017

ABSTRACT. In this paper, the concept of generalized rough set theory is applied to the theory of ordered LA-semigroups by using pseudoorder and some of their combined results have been shown. Properties of rough two-sided ideals, rough bi-ideals and rough prime ideals in ordered LA-semigroups have been studied and discussed on the basis of pseudoorder of relations.

2010 AMS Classification: 20M10, 20N99

Keywords: Ordered LA-semigroups, Rough sets, Rough ideals.

Corresponding Author: Moin Akhtar Ansari (maansari@jazanu.edu.sa)

1. Introduction

The notion of rough sets was introduced by Pawlak in his paper [10]. The rough set theory has emerged as another major mathematical approach for managing uncertainty that arises from inexact, noisy or incomplete information. In connection with algebraic structures, Biswas and Nanda [2], introduced the notion of rough subgroups, and Kuroki [7], introduced rough ideals in semigroups. Yaqoob et al. [1, 13, 14, 15, 16, 17] presented some results on roughness in semigroups and Γ -semihypergroups. Xiao and Zhang [12], introduced rough prime ideals and rough fuzzy prime ideals in semigroups.

The concept of an AG-groupoid was first given by Kazim and Naseeruddin in 1972 and they called it left almost semigroup (LA-semigroup), see [4]. Holgate called it left invertive groupoid [3]. An LA-semigroup is a groupoid having the left invertive law

$$(ab)c = (cb)a$$
, for all $a, b, c \in S$.

In an LA-semigroup [4], the medial law holds

$$(ab)(cd) = (ac)(bd)$$
, for all $a, b, c, d \in S$.

An LA-semigroup with right identity becomes a commutative monoid [8]. The connection of a commutative inverse semigroup with an LA-semigroup has been given in [9] as, a commutative inverse semigroup (S, \circ) becomes an LA-semigroup (S, \cdot) under $a \cdot b = b \circ a^{-1}$, for all $a, b \in S$. A commutative semigroup with identity comes from LA-semigroup by the use of a right identity.

The concept of an ordered LA-semigroup was first given by Shah et al. [11] and then Khan and Faisal in [5], applied theory of fuzzy sets to ordered LA-semigroups.

In this paper we used pseudoorder to define lower and upper approximations of an ordered LA-semigroup. Use of pseudoorder to define lower and upper approximations and related term of an algebraic structure e.g. LA-semigroup makes it more strongre than a linear order in the sense of bringing it more closer to an interval rather than a line which tends to its fuzzyfication. We proved that the lower and upper approximations of an LA-subsemigroup (resp., left ideal, right ideal, two-sided ideal, bi-ideal, prime ideal) in an ordered LA-semigroup is an LA-subsemigroup (resp., left ideal, right ideal, two-sided ideal, bi-ideal, prime ideal).

2. Preliminaries and basic definitions

Definition 2.1 ([5]). An ordered LA-semigroup (po-LA-semigroup) is a structure $(S, ., \leq)$ in which the following conditions hold:

- (i) (S, .) is an LA-semigroup,
- (ii) (S, <) is a poset (reflexive, anti-symmetric and transitive),
- (iii) for all a, b and $x \in S$, $a \le b$ implies $ax \le bx$ and $xa \le xb$.

Example 2.2 ([5]). Consider an open interval $\mathbb{R}_{\mathbb{O}} = (0,1)$ of real numbers under the binary operation of multiplication. Define $a*b=ba^{-1}r^{-1}$, for all $a,b,r\in\mathbb{R}_{\mathbb{O}}$, then it is easy to see that $(\mathbb{R}_{\mathbb{O}},*,\leq)$ is an ordered LA-semigroup under the usual order " \leq " and we have called it a real ordered LA-semigroup.

For a non-empty subset A of an ordered LA-semigroup S, we define

$$(A] = \{t \in S \mid t \leq a, \text{ for some } a \in A\}.$$

For $A = \{a\}$, we usually write it as (a].

Definition 2.3 ([5]). A non-empty subset A of an ordered LA-semigroup S, is called an LA-subsemigroup of S, if $A^2 \subseteq A$.

Definition 2.4 ([5]). A non-empty subset A of an ordered LA-semigroup S is called a left (right) ideal of S, if

- (i) $SA \subseteq A \ (AS \subseteq A)$,
- (ii) If $a \in A$ and $b \in S$ such that b < a, then $b \in A$.

Equivalently, a non-empty subset A of an ordered LA-semigroup S is called a left (right) ideal of S if $(SA] \subseteq A$ $((AS] \subseteq A)$.

A non-empty subset A of an ordered LA-semigroup S is called a two sided ideal of S if it is both a left and a right ideal of S.

Definition 2.5 ([5]). An LA-subsemigroup A of an ordered LA-semigroup S is called a bi-ideal of S, if

- (i) $(AS)A \subseteq A$,
- (ii) If $a \in A$ and $b \in S$ such that $b \le a$, then $b \in A$.

Definition 2.6 ([5]). An LA-subsemigroup A of an ordered LA-semigroup S is called an interior ideal of S, if

- (i) $(SA)S \subseteq A$,
- (ii) If $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

Definition 2.7 ([5]). Let S be an ordered LA-semigroup. A non-empty subset A of S is called a prime, if $xy \in A$ implies $x \in A$ or $y \in A$, for all $x, y \in S$. Let A be an ideal of S. If A is prime subset of S, then A is called prime ideal.

Definition 2.8 ([5]). A non-empty subset A of an ordered LA-semigroup S is called a quasi-ideal of S, if

- (i) $AS \cap SA \subseteq A$,
- (ii) If $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

Definition 2.9. A relation θ on an ordered LA-semigroup S is called a pseudoorder, if it satisfies the following conditions:

- (i) $\leq \subseteq \theta$,
- (ii) θ is transitive, that is, $(a,b),(b,c)\in\theta$ implies $(a,c)\in\theta$, for all $a,b,c\in S$,
- (iii) θ is compatible, that is, if $(a,b) \in \theta$, then $(ax,bx) \in \theta$ and $(xa,xb) \in \theta$, for all $a,b,x \in S$.

An equivalence relation θ on an ordered LA-semigroup S is called a congruence relation, if $(a, b) \in \theta$, then $(ax, bx) \in \theta$ and $(xa, xb) \in \theta$, for all $a, b, x \in S$.

A congruence θ on S is called complete, if $[a]_{\theta}[b]_{\theta} = [ab]_{\theta}$, for all $a, b \in S$. Where $[a]_{\theta}$ is the congruence class containing the element $a \in S$.

3. Rough subsets in ordered LA-semigroups

Let X be a non-empty set and θ be a binary relation on X. By $\wp(X)$ we mean the power set of X. For all $A \subseteq X$, we define θ_- and $\theta_+ : \wp(X) \longrightarrow \wp(X)$ by

$$\theta_{-}(A) = \{ x \in X : \forall y, \ x\theta y \Rightarrow y \in A \} = \{ x \in X : \theta N(x) \subseteq A \},\$$

and

$$\theta_+(A) = \{x \in X : \exists \ y \in A, \text{ such that } x\theta y\} = \{x \in X : \theta N(x) \cap A \neq \varnothing\}.$$

Where $\theta N(x) = \{y \in X : x\theta y\}$. $\theta_{-}(A)$ and $\theta_{+}(A)$ are called the lower approximation and the upper approximation operations, respectively. (cf. [6])

Example 3.1 ([1]). Let $X = \{a, b, c\}$ and $\theta = \{(a, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$. Then $\theta N(a) = \{a\}$; $\theta N(b) = \{b, c\}$; $\theta N(c) = \{a, b, c\}$; $\theta_{-}(\{a\}) = \{a\}$; $\theta_{-}(\{b\}) = \phi$; $\theta_{-}(\{c\}) = \phi$; $\theta_{-}(\{a, b\}) = \{a\}$; $\theta_{-}(\{a, c\}) = \{a\}$; $\theta_{-}(\{b, c\}) = \{b\}$; $\theta_{-}(\{a, b, c\}) = \{a, b, c\}$; $\theta_{+}(\{a\}) = \{a, c\}$; $\theta_{+}(\{b\}) = \{b, c\}$; $\theta_{+}(\{c\}) = \{b, c\}$; $\theta_{+}(\{a, b\}) = \{a, b, c\}$; $\theta_{+}(\{a, b, c\}) = \{a, b, c\}$.

Theorem 3.2 ([10]). Let θ and λ be relations on X. If A and B are non-empty subsets of S. Then the following hold:

- (1) $\theta_{-}(X) = X = \theta_{+}(X)$,
- (2) $\theta_{-}(\varnothing) = \varnothing = \theta_{+}(\varnothing),$
- (3) $\theta_{-}(A) \subseteq A \subseteq \theta_{+}(A)$,
- (4) $\theta_{+}(A \cup B) = \theta_{+}(A) \cup \theta_{+}(B)$,
- $(5) \ \theta_{-}(A \cap B) = \theta_{-}(A) \cap \theta_{-}(B),$

- (6) $A \subseteq B$ implies $\theta_{-}(A) \subseteq \theta_{-}(B)$,
- (7) $A \subseteq B$ implies $\theta_{+}(A) \subseteq \theta_{+}(B)$,
- (8) $\theta_-(A \cup B) \supseteq \theta_-(A) \cup \theta_-(B)$,
- (9) $\theta_+(A \cap B) \subseteq \theta_+(A) \cap \theta_+(B)$.

Definition 3.3. Let θ be a pseudoorder on an ordered LA-semigroup S and A be a non-empty subset of S. Then the sets

$$\theta_{-}(A) = \{x \in S : \forall y, x \theta y \Rightarrow y \in A\} = \{x \in S : \theta N(x) \subseteq A\}$$

and

$$\theta_+(A) = \{x \in S : \exists y \in A, \text{ such that } x\theta y\} = \{x \in S : \theta N(x) \cap A \neq \emptyset\}$$

are called the θ -lower approximation and the θ -upper approximation of A.

Example 3.4. We consider a set $S = \{a, b, c, d, e\}$ with the following operation "." and the order " \leq ":

$$\leq := \{(a, a), (b, b), (b, c), (b, d), (b, e), (c, c), (d, d), (e, e)\}.$$

We give the covering relation " \prec " and the figure of S as follows:

$$\prec := \{(b, c), (b, d), (b, e)\}$$

Then S is an ordered LA-semigroup because the elements of S satisfies left invertive

law. Now let

$$\theta = \{(a, a), (a, d), (b, b), (b, c), (b, d), (b, e), (c, c), (d, d), (e, c), (e, d), (e, e)\}$$

be a complete pseudoorder on S, such that

$$\theta N(a) = \{a, d\}, \ \theta N(b) = \{b, c, d, e\} \text{ and } \theta N(c) = \{c\}, \ \theta N(d) = \{d\}, \ \theta N(e) = \{c, d, e\}.$$

Now for $A = \{a, b, d\} \subseteq S$,

$$\theta_{-}(\{a,b,d\}) = \{a,d\} \text{ and } \theta_{+}(\{a,b,d\}) = \{a,b,c,d,e\}.$$

Thus, $\theta_{-}(\{a,b,d\})$ is θ -lower approximation of A and $\theta_{+}(\{a,b,d\})$ is θ -upper approximation of A.

For a non-empty subset A of S, $\theta(A) = (\theta_{-}(A), \theta_{+}(A))$ is called a rough set with respect to θ if $\theta_{-}(A) \neq \theta_{+}(A)$.

Theorem 3.5. Let θ be a pseudoorder on an ordered LA-semigroup S. If A and B are non-empty subsets of S. Then

$$\theta_+(A)\theta_+(B) \subseteq \theta_+(AB)$$
.

Proof. Let c be any element of $\theta_+(A)\theta_+(B)$. Then c=ab where $a \in \theta_+(A)$ and $b \in \theta_+(B)$. Thus there exist elements $x, y \in S$ such that

$$x \in A$$
 and $a\theta x$; $y \in B$ and $b\theta y$.

Since θ is a pseudoorder on S, $ab\theta xy$. As $xy \in AB$, we have

$$c = ab \in \theta_{+}(AB)$$
.

So
$$\theta_+(A)\theta_+(B) \subseteq \theta_+(AB)$$
.

Definition 3.6. Let θ be a pseudoorder on an ordered LA-semigroup S, then for each $a, b \in S$, $\theta N(a)\theta N(b) \subseteq \theta N(ab)$. If

$$\theta N(a)\theta N(b) = \theta N(ab),$$

then θ is called complete pseudoorder.

Theorem 3.7. Let θ be a complete pseudoorder on an ordered LA-semigroup S. If A and B are non-empty subsets of S. Then

$$\theta_{-}(A)\theta_{-}(B) \subseteq \theta_{-}(AB).$$

Proof. Let c be any element of $\theta_{-}(A)\theta_{-}(B)$. Then c=ab where $a \in \theta_{-}(A)$ and $b \in \theta_{-}(B)$. Thus we have $\theta N(a) \subseteq A$ and $\theta N(b) \subseteq B$. Since θ is complete pseudoorder on S, we have

$$\theta N(ab) = \theta N(a)\theta N(b) \subseteq AB,$$

which implies that $ab \in \theta_{-}(AB)$. So $\theta_{-}(A)\theta_{-}(B) \subseteq \theta_{-}(AB)$.

Theorem 3.8. Let θ and λ be pseudoorders on an ordered LA-semigroup S and A be a non-empty subset of S. Then

$$(\theta \cap \lambda)_+(A) \subseteq \theta_+(A) \cap \lambda_+(A).$$

Proof. The proof is straightforward.

Theorem 3.9. Let θ and λ be pseudoorders on an ordered LA-semigroup S and A be a non-empty subset of S. Then

$$(\theta \cap \lambda)_{-}(A) = \theta_{-}(A) \cap \lambda_{-}(A).$$

Proof. The proof is straightforward.

4. Rough ideals in ordered LA-semigroups

Definition 4.1. Let θ be a pseudoorder on an ordered LA-semigroup S. Then a non-empty subset A of S is called a θ -upper (resp., θ -lower) rough LA-subsemigroup of S, if $\theta_+(A)$ (resp., $\theta_-(A)$) is an LA-subsemigroup of S.

Theorem 4.2. Let θ be a pseudoorder on an ordered LA-semigroup S and A be an LA-subsemigroup of S. Then

- (1) $\theta_{+}(A)$ is an LA-subsemigroup of S,
- (2) If θ is complete, then $\theta_{-}(A)$ is, if it is non-empty, an LA-subsemigroup of S.

Proof. (1) Let A be an LA-subsemigroup of S. Then by Theorem 3.2(3),

$$\emptyset \neq A \subseteq \theta_+(A)$$
.

By Theorem 3.2(7) and Theorem 3.5, we have

$$\theta_+(A)\theta_+(A) \subseteq \theta_+(AA) \subseteq \theta_+(A)$$
.

Thus $\theta_+(A)$ is an LA-subsemigroup of S, that is, A is a θ -upper rough LA-subsemigroup of S.

(2) Let A be an LA-subsemigroup of S. Then by Theorem 3.2(6) and Theorem 3.7, we have

$$\theta_{-}(A)\theta_{-}(A) \subseteq \theta_{-}(AA) \subseteq \theta_{-}(A).$$

Thus $\theta_{-}(A)$ is, if it is non-empty, an LA-subsemigroup of S, that is, A is a θ -lower rough LA-subsemigroup of S.

The following example shows that the converse of above theorem does not hold.

Example 4.3. We consider a set $S = \{a, b, c, d, e\}$ with the following operation "." and the order " \leq ":

$$\leq := \{(a, a), (a, b), (b, b), (c, c), (d, d), (e, e)\}$$

We give the covering relation " \prec " and the figure of S as follows:

$$\prec := \{(a,b)\}$$

Here S is not an ordered semigroup because $c = c \cdot (d \cdot e) \neq (c \cdot d) \cdot e = d$. Then S is an ordered LA-semigroup because the elements of S satisfies left invertive law. Now let

$$\theta = \{(a, a), (a, b), (b, b), (c, c), (c, d), (c, e), (d, c), (d, d), (d, e), (e, c), (e, d), (e, e)\}$$

be a complete pseudoorder on S, such that

$$\theta N(a) = \{a, b\}, \ \theta N(b) = \{b\} \ \text{and} \ \theta N(c) = \theta N(d) = \theta N(e) = \{c, d, e\}.$$

Now for $\{a, b, c\} \subseteq S$,

$$\theta_{-}(\{a,b,c\}) = \{a,b\} \text{ and } \theta_{+}(\{a,b,c\}) = \{a,b,c,d,e\}.$$

It is clear that $\theta_{-}(\{a,b,c\})$ and $\theta_{+}(\{a,b,c\})$ are both LA-subsemigroups of S but $\{a,b,c\}$ is not an LA-subsemigroup of S.

Definition 4.4. Let θ be a pseudoorder on an ordered LA-semigroup S. Then a non-empty subset A of S is called a θ -upper (resp., θ -lower) rough left ideal of S, if $\theta_+(A)$ (resp., $\theta_-(A)$) is a left ideal of S.

Similarly, we can define θ -upper, θ -lower rough right ideal and θ -upper, θ -lower rough two-sided ideals of S.

Theorem 4.5. Let θ be a pseudoorder on an ordered LA-semigroup S and A be a left (right, two-sided) ideal of S. Then

- (1) $\theta_{+}(A)$ is a left (right, two-sided) of S,
- (2) If θ is complete, then $\theta_{-}(A)$ is, if it is non-empty, a left (right, two-sided) of S.

Proof. (1) Let A be a left ideal of S. By Theorem 3.2(1), $\theta_+(S) = S$.

(i) Now by Theorem 3.5, we have

$$S\theta_{+}(A) = \theta_{+}(S)\theta_{+}(A) \subseteq \theta_{+}(SA) \subseteq \theta_{+}(A).$$

- (ii) Let $a \in \theta_+(A)$ and $b \in S$ such that $b \leq a$. Then there exist $y \in A$, such that $a\theta y$ and $b\theta a$. Since θ is transitive, $b\theta y$ implies $b \in \theta_+(A)$. Thus $\theta_+(A)$ is a left ideal of S, that is, A is a θ -upper rough left ideal of S.
 - (2) Let A be a left ideal of S. By Theorem 3.2(1), $\theta_{-}(S) = S$.
 - (i) Now by Theorem 3.7, we have

$$S\theta_{-}(A) = \theta_{-}(S)\theta_{-}(A) \subseteq \theta_{-}(SA) \subseteq \theta_{-}(A).$$

- (ii) Let $a \in \theta_{-}(A)$ and $b \in S$ such that $b \leq a$. Then $[a]_{\theta} \subseteq A$ and $b\theta a$. This implies that $[a]_{\theta} = [b]_{\theta}$. Since $[a]_{\theta} \subseteq A$, $[b]_{\theta} \subseteq A$. Thus $b \in \theta_{-}(A)$. So $\theta_{-}(A)$ is, if it is non-empty, a left ideal of S, that is, A is a θ -lower rough left ideal of S. The other cases can be proved in a similar way.
- **Definition 4.6.** Let θ be a pseudoorder on an ordered LA-semigroup S. Then a non-empty subset A of S is called a θ -upper (resp., θ -lower) rough bi-ideal of S, if $\theta_+(A)$ (resp., $\theta_-(A)$) is a bi-ideal of S.

Theorem 4.7. Let θ be a pseudoorder on an ordered LA-semigroup S. If A is a bi-ideal of S, then it is a θ -upper rough bi-ideal of S.

Proof. Let A be a bi-ideal of S.

(i) By Theorem 3.5, we have

$$(\theta_{+}(A)S)\theta_{+}(A) = (\theta_{+}(A)\theta_{+}(S))\theta_{+}(A) \subseteq \theta_{+}((AS)A) \subseteq \theta_{+}(A).$$

(ii) Let $a \in \theta_+(A)$ and $b \in S$ such that $b \leq a$. Then there exist $y \in A$, such that $a\theta y$ and $b\theta a$. Since θ is transitive, so $b\theta y$ implies $b \in \theta_+(A)$.

From this and Theorem 4.2(1), we have $\theta_+(A)$ is a bi-ideal of S, that is, A is a θ -upper rough bi-ideal of S.

Theorem 4.8. Let θ be a complete pseudoorder on an ordered LA-semigroup S. If A is a bi-ideal of S, then $\theta_{-}(A)$ is, if it is non-empty, a bi-ideal of S.

Proof. Let A be a bi-ideal of S.

(i) By Theorem 3.7, we have

$$(\theta_{-}(A)S)\theta_{-}(A) = (\theta_{-}(A)\theta_{-}(S))\theta_{-}(A) \subseteq \theta_{-}((AS)A) \subseteq \theta_{-}(A).$$

(ii) Let $a \in \theta_{-}(A)$ and $b \in S$ such that $b \leq a$. Then $[a]_{\theta} \subseteq A$ and $b\theta a$. This implies that $[a]_{\theta} = [b]_{\theta}$. Since $[a]_{\theta} \subseteq A$, $[b]_{\theta} \subseteq A$. Thus $b \in \theta_{-}(A)$.

From this and Theorem 4.2(2), we obtain that $\theta_{-}(A)$ is, if it is non-empty, a bi-ideal of S.

Theorem 4.9. Let θ be a pseudoorder on an ordered LA-semigroup S. If A and B are a right and a left ideal of S respectively, then

$$\theta_+(AB) \subseteq \theta_+(A) \cap \theta_+(B)$$
.

Proof. The proof is straightforward.

Theorem 4.10. Let θ be a pseudoorder on an ordered LA-semigroup S. If A is a right and B is a left ideal of S, then

$$\theta_{-}(AB) \subseteq \theta_{-}(A) \cap \theta_{-}(B).$$

Proof. The proof is straightforward.

Definition 4.11. Let θ be a pseudoorder on an ordered LA-semigroup S. Then a non-empty subset A of S is called a θ -upper (resp., θ -lower) rough interior ideal of S, if $\theta_+(A)$ (resp., $\theta_-(A)$) is an interior ideal of S.

Theorem 4.12. Let θ be a pseudoorder on an ordered LA-semigroup S. If A is an interior ideal of S, then A is a θ -upper rough interior ideal of S.

Proof. The proof of this theorem is similar to the Theorem 4.7. \Box

Theorem 4.13. Let θ be a pseudoorder on an ordered LA-semigroup S. If A is an interior ideal of S, then $\theta_{-}(A)$ is, if it is non-empty, an interior ideal of S.

Proof. The proof of this theorem is similar to the Theorem 4.8. \Box

We call A a rough interior ideal of S if it is both a θ -lower and θ -upper rough interior ideal of S.

Definition 4.14. Let θ be a pseudoorder on an ordered LA-semigroup S. Then a non-empty subset Q of S is called a θ -upper (resp., θ -lower) rough quasi-ideal of S, if $\theta_+(Q)$ (resp., $\theta_-(Q)$) is a quasi-ideal of S.

Theorem 4.15. Let θ be a complete pseudoorder on an ordered LA-semigroup S. If Q is a quasi-ideal of S, then Q is a θ -lower rough quasi-ideal of S.

Proof. Let Q be a quasi-ideal of S.

(i) Now by Theorem 3.2(5) and Theorem 3.7, we get

$$\begin{array}{lcl} \theta_{-}(Q)S \cap S\theta_{-}(Q) & = & \theta_{-}(Q)\theta_{-}(S) \cap \theta_{-}(S)\theta_{-}(Q) \\ & \subseteq & \theta_{-}(QS) \cap \theta_{-}(SQ) \\ & = & \theta_{-}(QS \cap SQ) \\ & \subseteq & \theta_{-}(Q). \end{array}$$

(ii) Let $a \in \theta_{-}(Q)$ and $b \in S$ such that $b \leq a$. Then $[a]_{\theta} \subseteq Q$ and $b\theta a$. This implies that $[a]_{\theta} = [b]_{\theta}$. Since $[a]_{\theta} \subseteq Q$, $[b]_{\theta} \subseteq Q$. Thus $b \in \theta_{-}(Q)$. So we obtain that $\theta_{-}(Q)$ is a quasi-ideal of S, that is, Q is a θ -lower rough quasi-ideal of S.

Theorem 4.16. Let θ be a complete pseudoorder on an ordered LA-semigroup S. Let L and R be a θ -lower rough left ideal and a θ -lower rough right ideal of S, respectively. Then $L \cap R$ is a θ -lower rough quasi-ideal of S.

Proof. The proof is straightforward.

Definition 4.17. Let θ be a pseudoorder on an ordered LA-semigroup S. Then a non-empty subset A of S is called a θ -upper (resp., θ -lower) rough prime ideal of S, if $\theta_{+}(A)$ (resp., $\theta_{-}(A)$) is a prime ideal of S.

Theorem 4.18. Let θ be a complete pseudoorder on an ordered LA-semigroup S. If A is a prime ideal of S, then A is a θ -upper rough prime ideal of S.

Proof. Since A is a prime ideal of S, it follows from Theorem 4.5(1), that $\theta_+(A)$ is an ideal of S. Let $xy \in \theta_+(A)$ for some $x, y \in S$. Then

$$\theta N(xy) \cap A = \theta N(x)\theta N(y) \cap A \neq \emptyset.$$

Thus there exist elements

$$x^{'} \in \theta N(x)$$
 and $y^{'} \in \theta N(y)$, such that $x^{'}y^{'} \in A$.

Since A is a prime ideal of S, we have $x' \in A$ or $y' \in A$. So $\theta N(x) \cap A \neq \phi$ or $\theta N(y) \cap A \neq \phi$, and thus $x \in \theta_+(A)$ or $y \in \theta_+(A)$. Hence $\theta_+(A)$ is a prime ideal of

Theorem 4.19. Let θ be a complete pseudoorder on an ordered LA-semigroup S and A be a prime ideal of S. Then $\theta_{-}(A)$ is, if it is non-empty, a prime ideal of S.

Proof. Since A is an ideal of S, by Theorem 4.5(2), we have, $\theta_{-}(A)$ is an ideal of S. Let

$$xy \in \theta_{-}(A)$$
 for some $x, y \in S$.

Then

$$\theta N(xy) \subseteq A$$
, which implies that $\theta N(x)\theta N(y) \subseteq \theta N(xy) \subseteq A$.

We suppose that $\theta_{-}(A)$ is not a prime ideal of S. Then there exists $x, y \in S$ such that $xy \in \theta_{-}(A)$ but $x \notin \theta_{-}(A)$ and $y \notin \theta_{-}(A)$. Thus $\theta N(x) \nsubseteq A$ and $\theta N(y) \nsubseteq A$. So there exists $x' \in \theta N(x)$, $x' \notin A$ and $y' \in \theta N(y)$, $y' \notin A$. Hence

$$x'y' \in \theta N(x)\theta N(y) \subseteq A.$$

Since A is a prime ideal of S, we have $x' \in A$ or $y' \in A$. It contradicts our supposition. This means that $\theta_{-}(A)$ is, if it is non-empty, a prime ideal of S.

We call A a rough prime ideal of S, if it is both a θ -lower and a θ -upper rough prime ideal of S.

The following example shows that the converse of Theorem 4.18 and Theorem 4.19 does not hold.

Example 4.20. We consider a set $S = \{a, b, c, d, e\}$ with the following operation "." and the order " \leq ":

$$\leq := \{(a, a), (b, b), (c, c), (c, d), (d, d)\}$$

We give the covering relation " \prec " and the figure of S as follows:

$$\prec := \{(c,d)\}$$

Here S is not an ordered semigroup because $a = b \cdot (b \cdot a) \neq (b \cdot b) \cdot a = c$. Then S is an ordered LA-semigroup because the elements of S satisfies left invertive law. Now let

$$\theta = \{(a, a), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)\}$$

be a complete pseudoorder on S, such that

$$\theta N(a) = \{a, c, d\}, \ \theta N(b) = \{b, c, d\}, \ \theta N(c) = \{c, d\} \ \text{and} \ \theta N(d) = \{d\}.$$

Now for $\{b, d\} \subseteq S$,

$$\theta_{-}(\{b,d\}) = \{d\} \text{ and } \theta_{+}(\{b,d\}) = \{a,b,c,d\}.$$

It is clear that $\theta_{-}(\{b,d\})$ and $\theta_{+}(\{b,d\})$ are prime ideals of S. The subset $\{b,d\}$ is not an ideal and hence not a prime ideal.

5. Conclusions

The properties of ordered LA-semigroups in terms of rough sets have been discussed. Then through pseudoorders, it is proved that the lower and upper approximations of two-sided ideals (resp., bi-ideals and prime ideals) in ordered LA-semigroups becomes two-sided ideals (resp., bi-ideals and prime ideals).

In our future studies, following topics may be considered:

- 1. Rough prime bi-ideals of ordered LA-semigroups,
- 2. Rough fuzzy ideals in ordered LA-semigroups,
- 3. Rough fuzzy prime bi-ideals of ordered LA-semigroups.

References

- [1] M. Aslam, M. Shabir, N. Yaqoob and A. Shabir, On rough (m,n)-bi-ideals and generalized rough (m,n)-bi-ideals in semigroups, Ann. Fuzzy Math. Inform. 2 (2) (2011) 141–150.
- [2] R. Biswas and S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42 (1994) 251–254.
- [3] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud. 61 (1992) 101-106.
- [4] M. A. Kazim and M. Naseeruddin, On almost semigroups, Aligarh Bull. Math. 2 (1972) 1–7.
- $[5]\,$ M. Khan and Faisal, On fuzzy ordered Abel-Grassmann's groupoids, J. Math. Res. 3 (2011) 27–40.
- [6] M. Kondo, On the structure of generalized rough sets, Inform. Sci. 176 (2006) 589-600.
- [7] N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997) 139–163.
- [8] Q. Mushtaq and S. M. Yusuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978) 65–70.
- [9] Q. Mushtaq and S. M. Yusuf, On LA-semigroup defined by a commutative inverse semigroups, Math. Bech. 40 (1988) 59–62.
- [10] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci. 11 (1982) 341–356.
- [11] T. Shah, I. Rehman and A. Ali, On Ordering of AG-groupoids, Int. Electronic J. Pure Appl. Math. 2 (4) (2010) 219–224.
- [12] Q. M. Xiao and Z. L. Zhang, Rough prime ideals and rough fuzzy prime ideals in semigroups, Inform. Sci. 176 (2006) 725–733.
- [13] N. Yaqoob and M. Aslam, Generalized rough approximations in Γ-semihypergroups, J. Intell. Fuzzy Syst. 27 (5) (2014) 2445–2452.
- [14] N. Yaqoob and R. Chinram, On prime (m,n) bi-ideals and rough prime (m,n) bi-ideals in semigroups, Far East J. Math. Sci. 62 (2) (2012) 145–159.
- [15] N. Yaqoob, M. Aslam and R. Chinram, Rough prime bi-ideals and rough fuzzy prime bi-ideals in semigroups, Ann. Fuzzy Math. Inform. 3 (2) (2012) 203–211.
- [16] N. Yaqoob, M. Aslam, K. Hila and B. Davvaz, Rough prime bi-Γ-hyperideals and fuzzy prime bi-Γ-hyperideals of Γ-semihypergroups, Filomat, 31 (13) (2017) 4167–4183.
- [17] N. Yaqoob, M. Aslam, B. Davvaz and A. B. Saeid, On rough (m,n) bi-Γ-hyperideals in Γ-semihypergroups, UPB Sci. Bull. Ser. A, 75 (1) (2013) 119–128.

MOIN AKHTAR ANSARI (maansari@jazanu.edu.sa)

Department of mathematics, College of Science, New Campus, Post Box 2097, Jazan University, Jazan, KSA